Class Notes From Rajan Mital

In Depth...
Home
Know your Guide
Class notes
Attendances & Scores
Class Photo Album
Lecture1
Introduction to Manufacturing Processes
INDUSTRIAL SAFETY
Engineering materials
Notes on Cast Iron
Steels
FOUNDRY
Machine tools
HOT & COLD WORKING
SURFACE FINISH
Welding
In Depth...
MDU Papers of past years

Here's a place to pursue topics in more depth than can be done in the classroom.

More details on Fire Fighting

This is a page where I can broaden the context of a discussion and offer motivated students advanced material.
 

Table 1. Welding processes and letter designation.

Group

Welding Process

Letter Designation

Arc welding

Carbon Arc

CAW

 

Flux Cored Arc

FCAW

 

Gas Metal Arc

GMAW

 

Gas Tungsten Arc

GTAW

 

Plasma Arc

PAW

 

Shielded Metal Arc

SMAW

 

Stud Arc

SW

 

Submerged Arc

SAW

Brazing

Diffusion Brazing

DFB

 

Dip Brazing

DB

 

Furnace Brazing

FB

 

Induction Brazing

IB

 

Infrared Brazing

IRB

 

Resistance Brazing

RB

 

Torch Brazing

TB

Oxyfuel Gas Welding

Oxyacetylene Welding

OAW

 

Oxyhydrogen Welding

OHW

 

Pressure Gas Welding

PGW

Resistance Welding

Flash Welding

FW

 

High Frequency Resistance

HFRW

 

Percussion Welding

PEW

 

Projection Welding

RPW

 

Resistance-Seam Welding

RSEW

 

Resistance-Spot Welding

RSW

 

Upset Welding

UW

Solid State Welding

Cold Welding

CW

 

Diffusion Welding

DFW

 

Explosion Welding

EXW

 

Forge Welding

FOW

 

Friction Welding

FRW

 

Hot Pressure Welding

HPW

 

Roll Welding

ROW

 

Ultrasonic Welding

USW

Soldering

Dip Soldering

DS

 

Furnace Soldering

FS

 

Induction Soldering

IS

 

Infrared Soldering

IRS

 

Iron Soldering

INS

 

Resistance Soldering

RS

 

Torch Soldering

TS

 

Wave Soldering

WS

Other Welding Processes

Electron Beam

EBW

 

Electroslag

ESW

 

Induction

IW

 

Laser Beam

LBW

 

Thermit

TW

Arc Welding

The arc welding group includes eight specific processes, each separate and different from the others but in many respects similar.

The carbon arc welding (CAW) process is the oldest of all the arc welding processes and is considered to be the beginning of arc welding. The Welding Society defines carbon arc welding as "an arc welding process which produces coalescence of metals by heating them with an arc between a carbon electrode and the work-piece. No shielding is used. Pressure and filler metal may or may not be used." It has limited applications today, but a variation or twin carbon arc welding is more popular. Another variation uses compressed air for cutting.

The development of the metal arc welding process soon followed the carbon arc. This developed into the currently popular shielded metal arc welding (SMAW) process defined as "an arc welding process which produces coalescence of metals by heating them with an arc between a covered metal electrode and the work-piece. Shielding is obtained from decomposition of the electrode covering. Pressure is not used and filler metal is obtained from the electrode."

Automatic welding utilizing bare electrode wires was used in the 1920s, but it was the submerged arc welding (SAW) process that made automatic welding popular. Submerged arc welding is defined as "an arc welding process which produces coalescence of metals by heating them with an arc or arcs between a bare metal electrode or electrodes and the work piece. Pressure is not used and filler metal is obtained from the electrode and sometimes from a supplementary welding rod." It is normally limited to the flat or horizontal position.

The need to weld nonferrous metals, particularly magnesium and aluminum, challenged the industry. A solution was found called gas tungsten arc welding (GTAW) [also known as tungsten inert gas (TIG) welding] and was defined as "an arc welding process which produces coalescence of metals by heating them with an arc between a tungsten (non-consumable) electrode and the work piece. Shielding is obtained from a gas or gas mixture."

Plasma arc welding (PAW) is defined as "an arc welding process which produces a coalescence of metals by heating them with a constricted arc between an electrode and the work piece (transferred arc) or the electrode and the constricting nozzle (non-transferred arc). Shielding is obtained from the hot ionized gas issuing from the orifice which may be supplemented by an auxiliary source of shielding gas." Shielding gas may be an inert gas or a mixture of gases. Plasma welding has been used for joining some of the thinner materials.

Another welding process also related to gas tungsten arc welding is known as gas metal arc welding (GMAW). It was developed in the late 1940s for welding aluminum and has become extremely popular. It is defined as "an arc welding process which produces coalescence of metals by heating them with an arc between a continuous filler metal (consumable) electrode and the work piece. Shielding is obtained entirely from an externally supplied gas or gas mixture." The electrode wire for GMAW is continuously fed into the arc and deposited as weld metal. This process has many variations depending on the type of shielding gas, the type of metal transfer, and the type of metal welded.

A variation of gas metal arc welding has become a distinct welding process and is known as flux-cored arc welding (FCAW). It is defined as "an arc welding process which produces coalescence of metals by heating them with an arc between a continuous filler metal (consumable) electrode and the work piece. Shielding is provided by a flux contained within the tubular electrode." Additional shielding may or may not be obtained from an externally supplied gas or gas mixture.

The final process within the arc welding group of processes is known as stud arc welding (SW). This process is defined as "an arc welding process which produces coalescence of metals by heating them with an arc between a metal stud or similar part and the work piece". When the surfaces to be joined are properly heated they are brought together under pressure. Partial shielding may be obtained by the use of ceramic ferrule surrounding the stud.


Brazing (B)

Brazing is "a group of welding processes which produces coalescence of materials by heating them to a suitable temperature and by using a filler metal, having a liquidus above 450oC and below the solidus of the base materials. The filler metal is distributed between the closely fitted surfaces of the joint by capillary attraction."

A braze is a very special form of weld, the base metal is theoretically not melted. There are seven popular different processes within the brazing group. The source of heat differs among the processes. Braze welding relates to welding processes using brass or bronze filler metal, where the filler metal is not distributed by capillary action.


Oxy Fuel Gas Welding (OFW)

Oxy fuel gas welding is "a group of welding processes which produces coalescence by heating materials with an oxy fuel gas flame or flames with or without the application of pressure and with or without the use of filler metal."

There are four distinct processes within this group and in the case of two of them, oxyacetylene welding and oxyhydrogen welding, the classification is based on the fuel gas used. The heat of the flame is created by the chemical reaction or the burning of the gases. In the third process, air acetylene welding, air is used instead of oxygen, and in the fourth category, pressure gas welding, pressure is applied in addition to the heat from the burning of the gases. This welding process normally utilizes acetylene as the fuel gas. The oxygen thermal cutting processes have much in common with this welding processes.


Resistance Welding (RW)

Resistance welding is "a group of welding processes which produces coalescence of metals with the heat obtained from resistance of the work to electric current in a circuit of which the work is a part, and by the application of pressure". In general, the difference among the resistance welding processes has to do with the design of the weld and the type of machine necessary to produce the weld. In almost all cases the processes are applied automatically since the welding machines incorporate both electrical and mechanical functions.

 There are at least seven important resistance-welding processes. These are flash welding, high-frequency resistance welding, percussion welding, projection welding, resistance seam welding, resistance spot welding, and upset welding. They are alike in many respects but are sufficiently different.

Resistance spot welding (RSW) is a resistance welding process which produces coalescence at the faying surfaces in one spot by the heat obtained from resistance to electric current through the work parts held together under pressure by electrodes.

The size and shape of the individually formed welds are limited primarily by the size and contour of the electrodes. The equipment for resistance spot welding can be relatively simple and inexpensive up through extremely large multiple spot welding machines. The stationary single spot welding machines are of two general types: the horn or rocker arm type and the press type.

The horn type machines have a pivoted or rocking upper electrode arm, which is actuated by pneumatic power or by the operator`s physical power. They can be used for a wide range of work but are restricted to 50 kVA and are used for thinner gauges. For larger machines normally over 50 kVA, the press type machine is used. In these machines, the upper electrode moves in a slide. The pressure and motion are provided on the upper electrode by hydraulic or pneumatic pressure, or are motor operated.

For high-volume production work, such as in the automotive industry, multiple spot welding machines are used. These are in the form of a press on which individual guns carrying electrode tips are mounted. Welds are made in a sequential order so that all electrodes are not carrying current at the same time.

Projection welding (RPW) is a resistance welding process which produces coalescence of metals with the heat obtained from resistance to electrical current through the work parts held together under pressure by electrodes.

The resulting welds are localized at predetermined points by projections, embossments, or intersections. Localization of heating is obtained by a projection or embossment on one or both of the parts being welded. There are several types of projections: (1) the button or dome type, usually round, (2) elongated projections, (3) ring projections, (4) shoulder projections, (5) cross wire welding, and (6) radius projection.

The major advantage of projection welding is that electrode life is increased because larger contact surfaces are used. A very common use of projection welding is the use of special nuts that have projections on the portion of the part to be welded to the assembly.

Resistance seam welding (RSEW) is a resistance welding process which produces coalescence at the faying surfaces the heat obtained from resistance to electric current through the work parts held together under pressure by electrodes.

The resulting weld is a series of overlapping resistance spot welds made progressively along a joint rotating the electrodes. When the spots are not overlapped enough to produce gaslight welds it is a variation known as roll resistance spot welding. This process differs from spot welding since the electrodes are wheels. Both the upper and lower electrode wheels are powered. Pressure is applied in the same manner as a press type welder. The wheels can be either in line with the throat of the machine or transverse. If they are in line it is normally called a longitudinal seam welding machine. Welding current is transferred through the bearing of the roller electrode wheels. Water cooling is not provided internally and therefore the weld area is flooded with cooling water to keep the electrode wheels cool.

In seam welding a rather complex control system is required. This involves the travel speed as well as the sequence of current flow to provide for overlapping welds. The welding speed, the spots per inch, and the timing schedule are dependent on each other. Welding schedules provide the pressure, the current, the speed, and the size of the electrode wheels.

This process is quite common for making flange welds, for making watertight joints for tanks, etc. Another variation is the so-called mash seam welding where the lap is fairly narrow and the electrode wheel is at least twice as wide as used for standard seam welding. The pressure is increased to approximately 300 times normal pressure. The final weld mash seam thickness is only 25% greater than the original single sheet.

Flash Welding (FW) is a resistance welding process which produces coalescence simultaneously over the entire area of abutting surfaces, by the heat obtained from resistance to electric current between the two surfaces, and by the application of pressure after heating is substantially completed.

Flashing and upsetting are accompanied by expulsion of metal from the joint. During the welding operation there is an intense flashing arc and heating of the metal on the surface abutting each other. After a predetermined time the two pieces are forced together and coalescence occurs at the interface, current flow is possible because of the light contact between the two parts being flash welded.

The heat is generated by the flashing and is localized in the area between the two parts. The surfaces are brought to the melting point and expelled through the abutting area. As soon as this material is flashed away another small arc is formed which continues until the entire abutting surfaces are at the melting temperature. Pressure is then applied and the arcs are extinguished and upsetting occurs.

Upset welding (UW) is a resistance welding process which produces coalescence simultaneously over the entire area of abutting surfaces or progressively along a joint, by the heat obtained from resistance to electric current through the area where those surfaces are in contact.

Pressure is applied before heating is started and is maintained throughout the heating period. The equipment used for upset welding is very similar to that used for flash welding. It can be used only if the parts to be welded are equal in cross-sectional area. The abutting surfaces must be very carefully prepared to provide for proper heating.

The difference from flash welding is that the parts are clamped in the welding machine and force is applied bringing them tightly together. High-amperage current is then passed through the joint, which heats the abutting surfaces. When they have been heated to a suitable forging temperature an upsetting force is applied and the current is stopped. The high temperature of the work at the abutting surfaces plus the high pressure causes coalescence to take place. After cooling, the force is released and the weld is completed.

Percussion welding (PEW) is a resistance welding process which produces coalescence of the abutting members using heat from an arc produced by a rapid discharge of electrical energy.

Pressure is applied progressively during or immediately following the electrical discharge. This process is quite similar to flash welding and upset welding, but is limited to parts of the same geometry and cross section. It is more complex than the other two processes in that heat is obtained from an arc produced at the abutting surfaces by the very rapid discharge of stored electrical energy across a rapidly decreasing air gap. This is immediately followed by application of pressure to provide an impact bringing the two parts together in a progressive percussive manner. The advantage of the process is that there is an extremely shallow depth of heating and time cycle is very short. It is used only for parts with fairly small cross-sectional areas.

High frequency resistance welding (HFRW) is a resistance welding process which produces coalescence of metals with the heat generated from the resistance of the work pieces to a high-frequency alternating current in the 10,000 to 500,000 hertz range and the rapid application of an upsetting force after heating is substantially completed. The path of the current in the work piece is controlled by the proximity effect.

This process is ideally suited for making pipe, tubing, and structural shapes. It is used for other manufactured items made from continuous strips of material. In this process the high frequency welding current is introduced into the metal at the surfaces to be welded but prior to their contact with each other.

Current is introduced by means of sliding contacts at the edge of the joint. The high-frequency welding current flows along one edge of the seam to the welding point between the pressure rolls and back along the opposite edge to the other sliding contact.

The current is of such high frequency that it flows along the metal surface to a depth of several thousandths of an inch. Each edge of the joint is the conductor of the current and the heating is concentrated on the surface of these edges. At the area between the closing rolls the material is at the plastic temperature, and with the pressure applied, coalescence occurs.

Other Welding Processes

This group of processes includes those, which are not best defined under the other groupings. It consists of the following processes: electron beam welding, laser beam welding, thermit welding, and other miscellaneous welding processes in addition to electroslag welding which was mentioned previously.


Soldering (S)

Soldering is "a group of joining processes which produces coalescence of materials by heating them to a suitable temperature and by using a filler metal having a liquidus not exceeding 450 oC (840 oF) and below the solidus of the base materials. The filler metal is distributed between the closely fitted surfaces of the joint by capillary attraction." There are a number of different soldering processes and methods.


Solid State Welding (SSW)

Solid state welding is "a group of welding processes which produces coalescence at temperatures essentially below the melting point of the base materials being joined without the addition of a brazing filler metal. Pressure may or may not be used."

The oldest of all welding processes forge welding belongs to this group. Others include cold welding, diffusion welding, explosion welding, friction welding, hot pressure welding, and ultrasonic welding. These processes are all different and utilize different forms of energy for making welds.

Related Links

great welding lessons

Be sure to send me suggestions for the next In Depth segment.